

STATION D'EPURATION RESIDENCE MAUPITI


SEM AGGLO

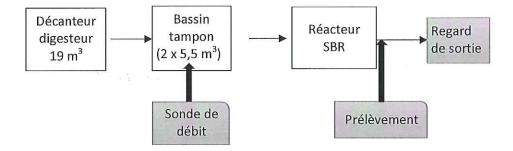
PROVINCE SUD direction de			É LE クチ			0 J	UIL. :	2015		
l'environnement AFFECTÉ	Dir.	code ENV	CM Projets Irans	CE	SGN	SAF	SICEP	SCBT	PPRB	PZF
COPIE										
OBSERVATIONS VM -> BICPE 10/86 AR										

DONNEES DE BASE

STEP

Date de mise en route 1er décembre 2014

DIMENSIONNEMENT


Les eaux usées transitant dans la station d'épuration de Maupiti sont uniquement des eaux vannes et des eaux ménagères, le réseau de la résidence étant un réseau séparatif.

DONNEES NOMINALES				
Nombre d'EH	112 EH			
Volume journalier théorique (150L/EH/j)	16,8 m ³ /j			
DBO5 journalière (60 g/EH/j)	6,72 kg/j			
DCO journalière (120g/EH/j)	18 kg/j			
MES journalier (90 g/EH/j)	10,1 kg/j			

La station n'a pas encore fait l'objet d'un récépissé de déclaration.

FILIERE DE TRAITEMENT

La station d'épuration est un système d'assainissement collectif boues activées de <mark>type SBR, Aquamax XL1.</mark>

RESULTATS DU BILAN 24H

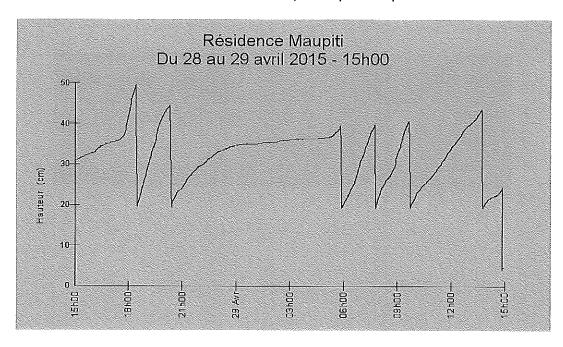
RESULTATS DES ANALYSES

Les prélèvements ont été effectués du 8 au 10 juin 2015 de manière ponctuelle, sur 3 cycles consécutifs. Un échantillon moyen a été réalisé.

Les résultats de cette campagne sont présentés dans le tableau ci-dessous. Le rapport d'analyses est joint en <u>Annexe 2</u>.

Analyses	Sortie	Normes de rejet*	Conformité Step**
DBO5 mg/L	8	25	C
D)00 mg/L	36	120	С
MES mg/L	11	35	C
ρH	6,65	Entre 6 et 8,5	С

^{*}Selon la délibération n°10277/DENV/SE du 30 avril 2009, cf. annexe 1


NC = non conforme

NA = non applicable

L'ensemble des paramètres analysés en sortie sont conformes à la délibération provinciale.

MESURE DE DEBIT

Une sonde pression a été placée dans le bassin tampon du 28 au 29 avril 2015. La courbe de la mesure est donnée ci-dessous. Le bilan a été réalisé par temps sec et pluvieux.

^{**}C = conforme

Résultats de la mesure de débit	
Débit moyen	0,34 m³/h
Volume journalier	8,1 m ³ /j
Equivalents habitants (150 l/EH/j)	54
Nombre de pompages	

Le débit moyen sur 24 heures est de $0.34~\text{m}^3/\text{h}$ soit un volume journalier de $8.1~\text{m}^3$, ce qui correspond à 54 EH. La station est donc en sous-charge hydraulique et n'atteint que 48~% de sa pleine charge.

Sur la courbe on observe bien une forte diminution du débit entrant pendant les heures de nuit, ce qui indique l'absence d'entrée d'eau parasite.

CONCLUSION

Les rejets de la station d'épuration de la résidence Maupiti sont conformes à la réglementation.

Cette station n'est qu'à 48 % de sa capacité hydraulique.

RESUME STATION D'EPURATION MAUPITI

Filière	Boues activées
	SBR
Dimensionnement	112 EH
Charge hydraulique	48 %
Analyses	Conformes

ANNEXE 1 - NORMES DE REJET PROVINCE SUD

Niveau de rejet des stations d'épuration

		The second secon
	Délibération n 206-97/BAPS du 20 juin 19	97
	STEP entre 50 et 500 EH	
	Filière biologique	Fillère physico-chimique ⁽¹⁾
pΗ	Na. 3.12 24 - 12 24 24 24 24 24 24 24 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	
Température	Provide the device and the provide state of the pr	
DBO ₅	soit ≤ 35 mg/l ou rendement ≥ 60%	rendement ≥ 30%
DCO	soit rendement ≥ 60%	The state of the s
MES		rendement ≥ 50%

⁽¹⁾ s'îl est justifié de l'innocuité du rejet pour le milieu récepteur

0.00				
		Déliti	ération nº10277/DENV/SE du 30 avril	2009
			STEP entre 50 et 500 EH	
		Fillère biologique	Lagunage	Fälière physico-chimique ⁽¹⁾
	ρH	entre 6 et 6,5		
Tem	pérature	30°C		FF 9405 301 535 Sq (4050) SQ (407 FF 1970 FF 1970
C)BO ₅	≤ 25 mg/i		rendement ≥ 35%
	oco	≤ 125 mg/i	rendement ≥ 60%	rendement ≥ 60%
	VES	≤ 35 mg/i	≤ 150 mg/l	rendement ≥ 60%

¹⁷⁾ s'îl est justifié de l'innocuité du rejet pour le milieu récepteur

		Arrêtê du 22 juin 2007 - France	
	STEP entre 2	0 et 2 000 EH	STEP > 2 000 EH
	Toutes les STEP	Lagunage	Toutes les STEP
pH			entre 6 et 8,5
Température			#####################################
D80 ₅	≤ 35 mg/i ou rendement ≥ 60%		≤ 25 mg/l ou rendement ≥ 70% ⁽²⁾
DCO	rendement ≥ 60%	rendement ≥ 60%	≤ 125 mgñ ou rendement ≥ 75%
MES	rendement ≥ 50%		≤ 35 mg/i ⁽³⁾ ou rendement ≥ 90%
NGL			≤ 15 mg/l ou rendement ≥ 70% ⁽⁴⁾⁽⁵⁾
PT			≤ 2 mg/l ou rendement ≥ 80% (4)(6)

^{(2) 60%} si STEP > 10 000 EH (3) 150 mg/l en cas de lagunage

⁽⁴⁾ STEP > 10 000 EH situées en zone sensible

^{(5) ≤ 10} mg/t ou rendement ≥ 70% st STEP > 100 000 EH

⁽⁶⁾ ≤ 1 mg/l ou rendement ≥ 80% si STEP > 100 000 EH

ANNEXE 2 – RAPPORT D'ANALYSES

Rapport d'analyse 2015/06/R0097

BC n° Aff n° Bilan 24h Devis n°

Echantillon: 2015/06/E0126 Lieu du prélèvement Maupiti Date de début d'analyse : 10/06/2015 Nature de l'échantillon : Eau usée Référence Client : Sortie STEP Température à réception : 25.5°C

EPUREAU Epureau 20, bis rue Descartes 382098846 Nouméa Cedex Tel: 28 17 27 epureau@epureau.nc

Date de prélèvement : du 08 au 10/06/2015 -Date de réception : 10/06/2015 11h10 Date de fin d'analyse : 23/06/2015

Préleveur : Flaconnage: labeau

Limite de Résultat Unité Eaux usées normes calédoniennes selon la délibération Méthode n*10277/DENV/SE du 30 avril 2009 quantification Paramètre indésirable Demande biologique en 3 NF EN 1899-1 8 mg O2/L 25 oxygène DBO5 Matières en suspension NF EN 872 35 2 mg/L (MES) Demande chimique en 3 ISO 15705:2002 36 125 mg/L oxygène DCO Paramètre physico chimique Température de mesure du NF T90-008 °C 0.1 24.4 ρН NF T90-008 6.65 Unītés pH 6.8.6 0.1

Remarques/Commentaires:

Nouméa le 24/06/2015

Responsable de laboratoire

^{|1)|}Les résultais se rapporteré uniquement à cet échandison.
|2)|Pour déclaire ou non la combomité, in n'a pas eté teru applicitement compte de l'incertifiede associée aux résultais.
|3)|Les réstatel précédés du égine « « consepondent aux limites de quaratication. NG = aux-inc non calcitable.
|4)|Toute s'es informations relatives aux erabyses sont disponibles aux disponibles.
|4)|Toute s'est informations relatives avant passages aux disponibles aux disponibl